Article 22313

Title of the article

ASSESSMENT OF CRASH-WORTHINESS OF LAMINATED SAFETY GLASS IN CARS 

Authors

Muyzemnek Aleksandr Yur'evich, Doctor of engineering sciences, professor, sub-department of transport machines Penza State University (40 Krasnaya street, Penza, Russia), muyzemnek@yandex.ru
Kartashova Ekaterina Dmitrievna, Postgraduate student, Penza State University (40 Krasnaya street, Penza, Russia), muyzemnek@yandex.ru
Voyachek Igor' Ivanovich, Doctor of engineering sciences, professor, sub-department of machine building
Penza State University (40 Krasnaya street, Penza, Russia), Voyachek@list.ru

Index UDK

621.001.63 

Abstract

Background. The research deals with the study of safe laminated glass of modern cars, consisting of two layers of toughened glass bonded together with a thin layer of polyvinyl butyral (polyvinyl butyral – PVB). The subject of research is the process of deformation and fracture of laminated safety glass in modern passenger cars in a frontal collision with a dummy. The purpose of the study is to compare the descriptive capabilities of the two computer-related models of deformation and fracture of laminated safety windshields when they collide with a dummy in the range of 10 to 60 km / h and collision angles – from 0° to 30°.
Materials and methods. Study of the deformation and fracture of safe laminated glass in modern passenger
cars in case of a frontal collision with a dummy are performed on the finite elements method.
Results. Two computer models are worked out. The first computer model of a windscreen is constructed on the base of shell elements of Belychko – Tsai with six points of integration in thickness and has two points of integration for each layer. The second computer model is built on volumetric elements with a single point of integration for each layer.
Conclusions. Comparison of descriptive capabilities of the two computer models of the collision process of the dummy with the windshield of the car proved that the second computer model satisfies the requirements of the established quality representations of the process of deformation and fracture of laminated safety glass in modern passenger cars. 

Key words

laminated safety glass, car, shock resistance, strain, fracture, the computer model.

Download PDF
References

1. GOST 5727–88. Steklo bezopasnoe dlya nazemnogo transporta. Obshchie tekhnicheskie usloviya [Harmless glass for ground transport. General technical conditions]. Moscow, 1988.
2. GOST 27903–88. Steklo bezopasnoe dlya avtomobiley, traktorov i sel'skokhozyaystvennykh mashin [Harmless glass for automobiles, tractors and agricultural machines]. Moscow, 1988.
3. Du Bois P. A., Kolling S., Fassnacht W. Computational Materials Science: Twelfth International Workshop on Computational Mechanics of Materials. 2003, vol. 28, issues 3–4, November, pp. 675–683.
4. Du Bois P. A., Fassnacht W., Kolling S. General aspects of material models in LSDYNA. LS-DYNA Forum. Bad Mergentheim, Germany, 2002, vol. 2, pp. 1–55.
5. Du Bois P. A. 4-th European LS-DYNA Users Conference. 2003, vol. 31/46, p. D-l.
6. Du Bois P. A. Crashworthiness engineering course notes. Livermore Software Technology Corporation, 2004.
7. Sun D. Z., Andrieux F., Ockewitz A., Klamser H., Hogenmüller J. Modelling of the failure behaviour of windscreens and component tests. Proceedings of the 4-th LSDYNA Forum. Bamberg, 2005.
8. Timmel M., Kolling S., Osterrieder P., Du Bois P. A. International Journal of Impact Engineering. 2007, vol. 34, issue 8, August, pp. 1465–1478.
9. Munsch M., Bourdet Nicolas, Deck Caroline, Willinger Remy Lateral glazing characterization under head impact: experimental and numerical investigation. Strasbourg, France. IMFS-CNRS University of Strasbourg, pp. 0000–0184.
10. Wingren Magdalena Windscreen study using a free moving headform. An investigation of windscreen behaviour when subjected to headform impact. Master Degree Project in Applied Mechanics. One year Level 30 ECTS Spring term, 2011.
11. Hallquist J. O. LS-DYNA. Theoretical Manual. Livermore Software Technology Corporation. Report 1018, 1991.
12. Mooney M. J. Appl. Physics. 1940, vol. 11, pp. 582–592.
13. Rivlin R. S. Large elastic deformations of isotropic materials. Proc. Roy. Soc. London, 1948, vol. 241, pp. 379–397.
14. Ogden R. W. Large deformation isotropic elasticity: on the correlation of theory and experiment for incompressible rubberlike solids. Proc. Roy. Soc. London, 1972, vol. 326, pp. 565–584.
15. Ogden R. W., Hopkins H. O., Sewell M. J. Mechanics of Solids. The Rodney Hill 60-th Anniversary Volume, Pergamon Press. Oxford, 1982, pp 499–537.
16. Johnson G. R., Holmquist T. J High-Pressure Science and Technology., 1994. American Institute of Physics, 1994.
17. Federal Motor Vehicle Safety Standard 201: Occupant Protection in Interior Impact, Federal Register, 1997, vol. 62, no. 6, April 8.
18. Dilip Dhalsod, Mike Burger, Jacob Krebs. LSTC Free Motion Headform. User’s Guide. Version: LSTC.FMH.011808. Livermore Software Technology Corporation, 2008.

 

Дата создания: 28.08.2014 14:09
Дата обновления: 29.08.2014 11:24